## Note

## Mass Spectrometric Evidence for H<sub>3</sub>O, HD<sub>2</sub>O, and D<sub>3</sub>O

Sworski (1) and Magee (2) have postulated that H<sub>3</sub>O is an important intermediate in the radiolysis of aqueous solutions. In addition, Bernstein (3) has predicted from thermochemical considerations that hydrogen-excess radicals such as H<sub>3</sub>O may be stable. Furthermore, many workers in the field of mass spectrometry have ob-

served an ion beam at mass 19 which could not be explained on the basis of an isotopic contribution. This ion beam in previous studies (4) was attributed to either H<sub>3</sub>O<sup>+</sup> formed by an ion-molecule reaction or F<sup>+</sup> from residual background.

Evidence is reported in this paper that the ion beam observed at M/E = 19 is in

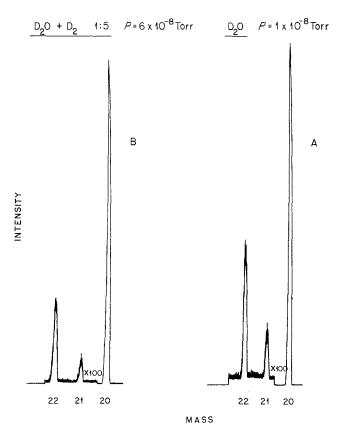



Fig. 1. Mass spectra showing evidence for HD<sub>2</sub>O (mass 21) and D<sub>5</sub>O (mass 22). In 1B, D<sub>2</sub> is added to the system and the abundance of HD<sub>2</sub>O and D<sub>5</sub>O, relative to D<sub>2</sub>O (mass 20), is greatly reduced, suggesting a surface reaction.

388 NOTE




Fig. 2. Abundance of D<sub>2</sub>O in D<sub>2</sub>O as a function of pressure in a stainless steel ion source.

fact H<sub>3</sub>O<sup>+</sup>; the progenitor is neutral H<sub>3</sub>O which is formed by a heterogeneous reaction on the walls of the ion source.

This study was carried out with two different instruments, a research mass spectrometer (5, 6) with a stainless steel ion source and a conventional mass spectrometer with a copper ion source. Samples of either H<sub>2</sub>O or D<sub>2</sub>O were introduced into the instruments in the pressure range of 10<sup>-9</sup> to 10<sup>-8</sup> torr for the experiments. An actual scan of the mass 20 through 22 range with D<sub>2</sub>O in the instrument is shown in Fig. 1A. The ions,  $HD_2O^+$  (21) and  $D_3O^+$ (22) were not observed in the absence of the ionizing electron beam or at very low electron energy. Qualitative appearance potential measurements showed that the ionization potential of D<sub>3</sub>O was about 1 eV lower than that of D<sub>2</sub>O. Wall reactions of  $D_2O^*$  (g) to form  $D_3O^+$  (g) as discussed by Marmet and Morrison (7) appear to be ruled out in this study because of the low concentration of  $D_2O^*$ . Furthermore, the walls were made negative with respect to the ion repeller to prevent the possible evolution of ions from the surface as noted by Martin (8).

A second possible origin of the ions, ion-molecule reactions with  $D_2O^+$  or some other abundant ion from  $D_2O$ , is eliminated by the following considerations. A simple calculation showed that under our experimental conditions and pressure range of from 2 to  $30 \times 10^{-9}$  torr the abundance of secondary ions from ion-molecule reactions was many orders of magnitude too low to explain the observed abundance of the new species. In addition to this evidence, the intensity ratios,  $HD_2O^+/HDO^+$  and  $D_3O^+/HDO^+$ 

NOTE 389

D<sub>2</sub>O<sup>+</sup> were measured as a function of the electric-field strength within the ionization chamber. No change in these ratios was observed for changes in the electric-field strength from about 0 to 20 V cm<sup>-1</sup>. This observation proves that HD<sub>2</sub>O<sup>+</sup> and D<sub>3</sub>O<sup>+</sup> were not produced by ion-molecule reactions since the abundance of secondary ions is sensitive to changes in the electric-field strength within the ionization chamber. A third possible origin of the ions, dissociative ionization of a dimer evolving from the surface, although apparently unlikely, could not be ruled out in the present study.

The intensity of  $D_3O^+$  was reduced by about a factor of 2 when  $D_2$  was added at a pressure of  $5 \times 10^{-8}$  torr, thus suggesting that the  $D_3O$  was formed on the surface (Fig. 1B).

The absolute abundance of the new species could not be accurately determined because the ionization efficiency curves are not known. Nevertheless, we obtained an approximate value (within an order of magnitude) by assuming equal cross sections for ionization by 75-eV electrons for the species with two hydrogens and the species with three hydrogens. The abundance of D<sub>3</sub>O is shown as a function of pressure for a stainless steel ion source in Fig. 2 over the range of from  $1 \times 10^{-8}$  to  $5 \times 10^{-8}$  torr. This abundance was reduced by about a factor of 2 when O<sub>2</sub> at a pressure of  $1 \times 10^{-8}$  torr was introduced into the system, further confirming that the  $D_3O$ was formed on the surface. The pressure dependence of  $H_3O$  in the copper ion source behaved differently, decreasing with increasing pressure over the pressure range  $10^{-9}$  to  $10^{-8}$  torr.

Evidence from these experiments is consistent with the formation of neutral  $H_3O$  by a surface reaction. The lifetime, with respect to spontaneous decomposition, of  $H_3O$  in the gas phase must be at least  $10^{-6}$  sec (transit time from the surface to the electron beam).

## References

- SWORSKI, T. J., J. Am. Chem. Soc. 86, 5034 (1964).
- MAGEE, J. L., Radiation Res. Suppl. 4, 20 (1964).
- 3. Bernstein, H. J., J. Am. Chem. Soc. 85, 484
- 4. LICHTMAN, D., J. Vacuum Sci. Technol. 2, 70 (1965).
- Wells, G. F., and Melton, C. E., Rev. Sci. Instr. 28, 1065 (1957).
- 6. Melton, C. E., J. Chem. Phys. 35, 1751 (1961).
- MARMET, P., AND MORRISON, J. D., J. Chem. Phys. 36, 1238 (1962).
- Martin, T. W., J. Chem. Phys. 43, 1422 (1965).

C. E. MELTON P. S. RUDOLPH

Oak Ridge National Laboratory Oak Ridge, Tennessee\* Received November 30, 1965; revised December 21, 1965

\* Research sponsored by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation.